222 research outputs found

    Fingering Instability in Combustion

    Full text link
    A thin solid (e.g., paper), burning against an oxidizing wind, develops a fingering instability with two decoupled length scales. The spacing between fingers is determined by the P\'eclet number (ratio between advection and diffusion). The finger width is determined by the degree two dimensionality. Dense fingers develop by recurrent tip splitting. The effect is observed when vertical mass transport (due to gravity) is suppressed. The experimental results quantitatively verify a model based on diffusion limited transport

    Hydrodynamics of the Kuramoto-Sivashinsky Equation in Two Dimensions

    Full text link
    The large scale properties of spatiotemporal chaos in the 2d Kuramoto-Sivashinsky equation are studied using an explicit coarse graining scheme. A set of intermediate equations are obtained. They describe interactions between the small scale (e.g., cellular) structures and the hydrodynamic degrees of freedom. Possible forms of the effective large scale hydrodynamics are constructed and examined. Although a number of different universality classes are allowed by symmetry, numerical results support the simplest scenario, that being the KPZ universality class.Comment: 4 pages, 3 figure

    Sivashinsky equation in a rectangular domain

    Get PDF
    The (Michelson) Sivashinsky equation of premixed flames is studied in a rectangular domain in two dimensions. A huge number of 2D stationary solutions are trivially obtained by addition of two 1D solutions. With Neumann boundary conditions, it is shown numerically that adding two stable 1D solutions leads to a 2D stable solution. This type of solution is shown to play an important role in the dynamics of the equation with additive noise

    Biscale Chaos in Propagating Fronts

    Full text link
    The propagating chemical fronts found in cubic autocatalytic reaction-diffusion processes are studied. Simulations of the reaction-diffusion equation near to and far from the onset of the front instability are performed and the structure and dynamics of chemical fronts are studied. Qualitatively different front dynamics are observed in these two regimes. Close to onset the front dynamics can be characterized by a single length scale and described by the Kuramoto-Sivashinsky equation. Far from onset the front dynamics exhibits two characteristic lengths and cannot be modeled by this amplitude equation. An amplitude equation is proposed for this biscale chaos. The reduction of the cubic autocatalysis reaction-diffusion equation to the Kuramoto-Sivashinsky equation is explicitly carried out. The critical diffusion ratio delta, where the planar front loses its stability to transverse perturbations, is determined and found to be delta=2.300.Comment: Typeset using RevTeX, fig.1 and fig.4 are not available, mpeg simulations are at http://www.chem.utoronto.ca/staff/REK/Videos/front/front.htm

    The Sivashinsky equation for corrugated flames in the large-wrinkle limit

    Full text link
    Sivashinsky's (1977) nonlinear integro-differential equation for the shape of corrugated 1-dimensional flames is ultimately reducible to a 2N-body problem, involving the 2N complex poles of the flame slope. Thual, Frisch & Henon (1985) derived singular linear integral equations for the pole density in the limit of large steady wrinkles (N1)(N \gg 1), which they solved exactly for monocoalesced periodic fronts of highest amplitude of wrinkling and approximately otherwise. Here we solve those analytically for isolated crests, next for monocoalesced then bicoalesced periodic flame patterns, whatever the (large-) amplitudes involved. We compare the analytically predicted pole densities and flame shapes to numerical results deduced from the pole-decomposition approach. Good agreement is obtained, even for moderately large Ns. The results are extended to give hints as to the dynamics of supplementary poles. Open problems are evoked

    Nonlinear dynamics of the viscoelastic Kolmogorov flow

    Full text link
    The weakly nonlinear regime of a viscoelastic Navier--Stokes fluid is investigated. For the purely hydrodynamic case, it is known that large-scale perturbations tend to the minima of a Ginzburg-Landau free-energy functional with a double-well (fourth-order) potential. The dynamics of the relaxation process is ruled by a one-dimensional Cahn--Hilliard equation that dictates the hyperbolic tangent profiles of kink-antikink structures and their mutual interactions. For the viscoelastic case, we found that the dynamics still admits a formulation in terms of a Ginzburg--Landau free-energy functional. For sufficiently small elasticities, the phenomenology is very similar to the purely hydrodynamic case: the free-energy functional is still a fourth-order potential and slightly perturbed kink-antikink structures hold. For sufficiently large elasticities, a critical point sets in: the fourth-order term changes sign and the next-order nonlinearity must be taken into account. Despite the double-well structure of the potential, the one-dimensional nature of the problem makes the dynamics sensitive to the details of the potential. We analysed the interactions among these generalized kink-antikink structures, demonstrating their role in a new, elastic instability. Finally, consequences for the problem of polymer drag reduction are presented.Comment: 26 pages, 17 figures, submitted to The Journal of Fluid Mechanic

    Nonlinear equation for curved stationary flames

    Get PDF
    A nonlinear equation describing curved stationary flames with arbitrary gas expansion θ=ρfuel/ρburnt\theta = \rho_{{\rm fuel}}/\rho_{{\rm burnt}}, subject to the Landau-Darrieus instability, is obtained in a closed form without an assumption of weak nonlinearity. It is proved that in the scope of the asymptotic expansion for θ1,\theta \to 1, the new equation gives the true solution to the problem of stationary flame propagation with the accuracy of the sixth order in θ1.\theta - 1. In particular, it reproduces the stationary version of the well-known Sivashinsky equation at the second order corresponding to the approximation of zero vorticity production. At higher orders, the new equation describes influence of the vorticity drift behind the flame front on the front structure. Its asymptotic expansion is carried out explicitly, and the resulting equation is solved analytically at the third order. For arbitrary values of θ,\theta, the highly nonlinear regime of fast flow burning is investigated, for which case a large flame velocity expansion of the nonlinear equation is proposed.Comment: 29 pages 4 figures LaTe

    Combustion theory and modeling

    Full text link
    In honor of the fiftieth anniversary of the Combustion Institute, we are asked to assess accomplishments of theory in combustion over the past fifty years and prospects for the future. The title of our article is chosen to emphasize that development of theory necessarily goes hand-in-hand with specification of a model. Good conceptual models underlie successful mathematical theories. Models and theories are discussed here for deflagrations, detonations, diffusion flames, ignition, propellant combustion, and turbulent combustion. In many of these areas, the genesis of mathematical theories occurred during the past fifty years, and in all of them significant advances are anticipated in the future. Increasing interaction between theory and computation will aid this progress. We hope that, although certainly not complete in topical coverage or reference citation, the presentation may suggest useful directions for future research in combustion theory

    Potential model of a 2D Bunsen flame

    Full text link
    The Michelson Sivashinsky equation, which models the non linear dynamics of premixed flames, has been recently extended to describe oblique flames. This approach was extremely successful to describe the behavior on one side of the flame, but some qualitative effects involving the interaction of both sides of the front were left unexplained. We use here a potential flow model, first introduced by Frankel, to study numerically this configuration. Furthermore, this approach allows us to provide a physical explanation of the phenomena occuring in this geometry by means of an electrostatic analogy

    Hopf's last hope: spatiotemporal chaos in terms of unstable recurrent patterns

    Full text link
    Spatiotemporally chaotic dynamics of a Kuramoto-Sivashinsky system is described by means of an infinite hierarchy of its unstable spatiotemporally periodic solutions. An intrinsic parametrization of the corresponding invariant set serves as accurate guide to the high-dimensional dynamics, and the periodic orbit theory yields several global averages characterizing the chaotic dynamics.Comment: Latex, ioplppt.sty and iopl10.sty, 18 pages, 11 PS-figures, compressed and encoded with uufiles, 170 k
    corecore